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Abstract

The solar chromosphere  consists of three classes
plagc, network, background - which cou-

ttibute ctiffcrcutly to ultraviolet ractiatiou reacl]-
iug the earth. Solar physicists are illtermted iu
relatiug plage area aud iuteusity to UV irradi-
auce, as well as uuctcrstamtiug  the spatial aud
tcm~)oral  evolutiotl of plage sha~)cs.  WC clescribc
a clata set of solar images, meaus  of segumat-
iug the images iuto corlstitucllt classes, a[ld a
novel higll-level re~)rcscutatiorl  for compact ot)-
jccts based ou a spatial ‘mcmhcrship fullctio~l’
ctefiuecf via a triaugulatcxt  planar graph. Segulcll-
tatious are fouud usiug  a discrete hiarkov  rau-
clom fkkl setup, auct the high-level rqJrescuta-
tious  are lcarucct by a Markov cllaiu  hIolite  Carlo
birtll/death process on the triaugulatious,

Introduction
As observed in ultraviolet light (figure I) the solar
chroluos~~tlerc roughly co~lsists of tllrm clwses:  plage
(bight magnetic disturbances), network (hot bouud-
arics of convection cells), and hackgrouud (cooler cell
iuteriors). I’lages appear as irregular groups of cllltnps
and cxpcrimc,e  a cycle  of formation and dissil)atioll,
startiug out as relatively com~)act rc,gio~ls atld decay -
itlg over mauy days iuto a diffuse ald brokmi.up clus-
ter (Ziriu, 1988, p. 317). The cell-structured network
has little contrast with the Lackgrouud, is s~)at ially
homogeneous, aud persists for tms of hours. The cells
(difkult to scw iu this halftoncd rcmdrn-i,,g)  I,ave a cl,ar-
act,eristic size, aud it is thought that they arise due to
convect ivc processes iu the plasma makiug up the solar
atmosphere (Zirin, 1988, p. 126).

The three classes contribute diffcrmtty  to tllc ul-
t ravicdet  (UV)  radiation reaching Earth’s upper at mo-
sphcrc, with tile plages auc] network giving the ktrgcst
contribution. While this radiation c.at~wt lm sensed
direct ly frmn t hc gmuud,  the features giviug  rise to
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i t  catl lw. Suc]i lncasureme~lts  are iu~)uts  t o  ltwdcls
of solar irradiaum ~vllich arc crucial to understanding
phclloluella  such as global warming aud atmoplwric
l)llc,tc,cllc~tlistry (W’itlibroe aud Kalkofell, 1994).

Also of interest is the wolutioll  of plagcs. As mcn-
tiolml  al)ovc, a typical sequence has Iwcll clcscribcd:
frolu plage rmmgcmw as a shape of rclat ivcl}~ smooth
bouudary, to ex~)ansion,  and thrm evrmt ual dissolution
as au irregular, tmtaclcd  fo~la. Howwwr,  the undcr-
st audillg  is of a qualitative ald alwcclot al sort (e.g.
(Stix, 1991, ~). 284) for related work),  aud a more
qwitlt it at iw descri~)t ion of ant icipat cd pla~c shapes
atld tlw evolution of plagc regiom  lvould I)c of value.

Iu hotll sorts of prohlcm descrilwl  abow one re-
duces a series of ituages,  colu~)risillg  ]mrhaps 500h111  of
data, to a titnc series of areas and iutrmsitirxs or plage
dCSCri~Jt io~ls. For cxalllple, ~mr-class arms ald mean
itlte~lsitics call be represented ill a~)out  48 l@cs ~J(T

~h~[] il~~agc. T’llc &!script,ioIl of the feat urm Of illtcrc@
for o~lc Il]ag[! Illigllt take a fcxv KB ~m image,  dqxulc]-
illg oti t lw act ivit y level. ‘lhcsc t itllc series distill the
diffuse itlforlllatioll  ill tllc large data set itlto a scimltif-
ically usal)le form, at least for tlm tasks at hand,

l’he ])ril]lary source of data for tlLis study is tlm set
of CaI1 K full-disk sl)cctrollclic]gra~t~s tlmt has hem
takcll on film, daily or as olmrvitg conditions pcr-
lait, at Sacramento 1’eak Nat iollal Solar Olmrvatory
in Sunspot, Nhl from tllc mid-sixties on}vard. Au iu-
terval Oftllrwe films, from the mid-eighties for~vard, has
lNXW digit imd to 2K x 2K pixels, at which point atruo-
s])hcric blurriug limits resolution.

Image Decomposition
lrirst wc discuss the problem of partitioning the im-
age itlt o ~da.ge, net }york, atld background coluponeuts.
Ge[mally,  scientists either al)lJy a threshold across the
flattmmd itllagc to dctermitw plage areas, or mauually
surroutld t Im plages with polygplls. The f[rst method,
}Vllilc siml)lc  and objcctiw, i,gllorcs all available sl)atial
illforlrlatio~l. The secoIld nwtllod uses sul)statdial  dm
Illaill  k[lcwlcdgc,  hut is also highly subjective, difficult
to describe, aud hard to rqwat.

l)LI(I  to the Strong prior inforlllat ion a~ailal)le  to U S

shout tile itnagcs, we adopt the Ilayesiatl framework
of ilifcrcl)cc  of uurlcrlyiug  pixel  classes basccl on the



.

Figure 1: A chromosphwic  image  from 15 July 1992, showing  several plagm. In the miter is a detail ima,gc of the. .
northwest plage pair; at right is a detail  from disk cmtcr, with cousidcral)lc  cent rast cmhauccmeut,  showiug  the
network auct backgrwuuct.

observed iutensity. Dcnotiug  pixel sites s = [s] S2] ill
au ilnage domaiu N, aud defining matrices of class
labels  x = {m. }~=~  and otmrvccl  iuteusit im y, the
posterior probability of labels  given data is

1 ’ (X I y) = P(y \ x) P(x)/I’(Y) ~ I’(Y I X)1’(X)  . (1)

The maximum a posterior (hIAI’) rule maximizes this
probatjility:

x n arg max log P(y [x) +- log  I’(X) . (2)
x

The first term is the familiar likelihood fullctionj telling
how the data is gottca  from the labels; the second is the
prior probability of a given labeliug.  Iu practice, the
first tcrln forms fidelity to the data while the scmnd
penalizes uulikely  rough lat)eliugs.

Prior models may be spcxifiecl iu many ways; we nave
used the smoothness priors

P(x) = Z-’ exI)[-@~ 1(x. # x.)] (3)
S’-s

introduced by Besag (Bcsag,  1974) atd Gcmatl  aud
Gcman (Gcman  aud Gmnau, 1984) .  At)ow,  Z is a
constant normalizing the distribution, aud the suul-
mation extends over all ‘neighboring’ pixels (s w s’)
iu N. Below we have taken the neigllborllood rwlat  ion
to iucludc all pixels  strictly less thau two units apart
in Euclideau distance - each interior pixel has ciglt
mighbors.  For ,6 = O, this distribution is uniform on
all 3cardINJ labeliugs,  and as @ is increased, smoother
aud smoother labeliugs  are favored.

The remaiuiug  ingredient is the likelihood

r(y I x) = ~ P(y. I 9:. ) (4)
schr

where we assume that intensities are iudependcmt con-
ditional on the labels  being known. The three densities
1’(y I x = k) cau be estimated from labeled data sup-
pliecl by scientists. It is not surprising that the plage

and network iutmsities  have a heavy tail making
a lmrmal distribution inappropriate. Nonparametric
distributional tests confirm that the lognormal distri-
I)utiou is a good model for the per-class intensities.

Tile objective function of (2) becomes

The tradeoff betwcm  consistency of each observed itl-
temity  with the mean of its assigned class, aud agree-
ment of neighboring class labels, is al)parent.  If @ = O
aud the class variauces  are identical we recover the
threshold rule current ly used iu practice.

IIowcwcr, with @ >0, the optiluization  bxomcs cou-
~)lcd across sites, aud is entirely int ract al)lc for our
three-class problem. To tackle this problem we have
followed the well-known numerical method known as
the Gibbs sampler (Gemau aud Gcmau,  1984). 111
brief, this works by cycling through each site, com-
~)ut iug 1’(xS I y,, o’~(~) ) for each class, and choosiug
tile next latml  from this distribution. For finite label
spaces, the resulting (raudom)  sequence  of labeliugs
converges in dist ribut ion to tlie posterior. To ext remize
the posterior, oae sharpens tile distribution by decreas-
ing a scale ~)arameter  slowly to zero, aud the resulting
labeliug  is the MAP estimate.

Sample results are shown iu figure 2. The first
palml shows a detail of a spcct roheliogram from Janu-
ary 1980; the plage is at lower-right. Besicle  this is
the corrwpondiug  threshold segment at ion. The al)uu-
daut speckle is consistent with the implicit prior that,
is uuiform  over all labelings. Iu the final pauel is the
MAI’  segment at ion with MIW  prior at @ = 0.7. The
estimate is found by the staudard Gibbs sampler a~)-
proach with temperature lowered iu steps over 800 iu~-
age sweeps. The MAP/hIRF  segmcmtat  ion eliluiuat es
really  of the tiuy gaps iu the large plagc and makes the
network structure more apparcult.
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Figure 2: Original image detail~) threshold scgmentat  ioll, h4AP/hIRF  segment at iclll with /5’ : 0.7.

Spatial Descriptions
Now we address the second of the conccrm  raised in the
introduction, that of representing and analyziug  plage
shape. In contrast to the essentially pixel-scale char-
acteristics of the network/background iutm-play, plages
are high-level phenomena which are not well-captured
hy pixel-level rules. Followiug  the lead of Grman-
dcr (Grenander et al . , 1991), we pursue a hierarchi-
cal representation of plages.  We will flud it convellicmt
to embed the pixel sites IV iu a Louuded contitluum
~ c R 2. To represent aplage, or aclusterofrelatml
plages,  we propose a tent-like structure deflnecl by a
triatlgulated planargraph

G’= (v, E, h) (5)
VCN a vertex set

E c N2 an eclge rclatiou

h: V-+ [0,1] a height fuuction

The height function extends to all of ~ by linear in-
terpolation  across the faces of the pyramids (figure 3).
This structure is intended to model the “dc.grcc of
membership” of a given pixel in the plage class, and
allows the binding of nearby ~J@2 regions into om co-
herelt  object. If the height fuuctio~l  is thresholded,
the resulting shape is a cluster of regions bouuclccl  by
(not necessarily convex) polygons. This is similar to
the way scientists currently delimit plage regions matl-
ually.

To defluc a probability distribution on these struc-
tures, we generate each as the Delauuay  triatlgula-
tion (Aureuhammcr, 1991 ) of independently choseu
points in ~. These ~)oitks comprise V, aud E is .gmer-
ated mcchauically  as the Delauuay  triangulation of V.
Heights arc then assigued  iudcpmdently  to the mml-
bcrs of V to form tic-points. The probability density
of such a height function h is

~’(h)  = ~-le- ‘c a r d ( v ” ) (G)

$;  5

Figure 3: Top, a pcrslwctivc  view of a ridge structure;
hot tom, an air view oft he same structure.

and zero if tlm height function is not generated as such
a triangulation. WC have assumed the mcmtms  of V
are C11OSCI1 according to the uniform distribution on
N, ancl that the heights arc uuiform on [0, 1]. W’hilt
rcfiucmcmts (self-avoiding vertices, correlated heights)
are possible, their ultimate efl’ect in the prcwmce of
data would he mitlitnal and not worth the added model
complexity. Another advantage of this distribution is
that additions, deletions, and adjustments of om ver-
tex have a silnple cfkct on the cost, ancl a local effect
011 the triangulation and the resulting cost function.

Overlaying the mm structure on the existing NIRI?
Inoclel is simple; wc wish to force agrecmcut betwecm
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Figure 4: Left, origiual  image, winclowcd to avoid edge effects; ~~llt~’r,  Plage Pro~~ahilitYi  right ) meml)ersllil)  function.

plage labels aud the membership fuuctioxl

The goal becomes to adapt h to achiel’e  a parsimonious
description while fittiug the pixels which iudecxl belong
to the object of iuterest.

A procedure related to the Gibbs sampler is followed
to iufer h for a given labeliug  x. Earlier, Iaovemcnts  in
the parameter space were label-chauges aud were done
via the Gibbs saulpler;  now such updates correspond
to alteriug the plage graph, aud are better done by the
simpler L4etropolis  steps. Such a step proposes a ncw
state h’, computes P(h’ I x) /p(h I x), aud probabilisti-
cally accepts or rejects }L’ on this basis. To propose a
new state, one of three operators is chosen rauclolnly
at each itcrat ion: vertex move, vertex raise (or lower),
aud vertex birth/death.

L40ve  aud raise are elemcmtary as they are self-
iaverm as long as isotropic vertex-moves aad sym-
metric vertex-raises are used. The birth/death pair is
harcler because such moves are not self-itlversc, i.e. the
iuverse of a birth whea card(V) = k is a death when
card(V) = k + 1. To ensure equilibrium at the dist rihu-
tion above, the acceptaucc  probability is chosea folknv-
ing the recent work of P. Greta (Green, 1995). Finally,
to speecl the sampliug process the ildicator 1 (z. = 3)
above is replaced with its expectation P(xS = 3 [ y.).

Some results are shown iu figure 4. ‘The first pauel
shows the origiual  solar image, aud the second paucl is
the ‘probability map’ or plage probability conditioned
on the observed data. It is this map that the gra~)h
is iutended to fit. The third pauel shows a typical
triangulation after a bura-iu period of 15000 successful
Metropolis steps. It is clear that the triangulation has
captured the essentials of the plage shape.

Conclusions
We described two scientific problems of relating solar
active regions to solar irradiauce, aud understa]ldiug
the evolution of active regicms. Currently, scicatists

often label images mauually,  or by thresholdiug the
observed intensities. The use of MRF image priors al-
lows the colltrolled, object ivc iucorporat  ion of simple
kinds of prior knowledge ahc)ut the sl)at ial coherence
of labels. Ily using these priors in a Dayesiau iuference
setup, images are scgmeated  w,ithout  the s~)cckle arti-
facts assoc. iatcd with threshold labeliug.  Also, in all
effort to understand the tcnlporal  cvolutioll  of plage
sha~m,  we have pro~)oscd a rcpresmt  at ion of active re-
gions iu tcrlns of a triangulated graph which gives rise
to a mcmtmshil)  fuuction that is learned from image
data.
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